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LETTER TO THE EDITOR 
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230026, People's Republic of China 

Received 7 June 1994 

Abstract The hubdent transpa is investigaled by the renormalizarion-pup method. I[ is 
shown that the deviation From the Gaussian distribution for the turbulent velocity has important 
effects upon the advection of a passive scalar. Expanding the equation of turbulent transpart up 
to the higher order, the Batchelor constant is predicted to be Ba = 0.761 in agreement with the 
experimental data 0.5-0.8. 

Yakhot and Orszag 11-41 have applied the renormalization-group (RG) method developed by 
Forster, Nelson and Stephen [SI to analyse the turbulent transport problem. Expanding the 
equation of turbulent transport up to the second order, they have calculated the Batchelor 
constant B ~ 1 . 1 6 1 .  However, the result is not in agreement with the experimental data 
because the experimental data for the Batchelor constant defined in the RG theory of 
turbulence is 0.5-0.8 [6]. 

Though the random force introduced in the RG theory of turbulence obeys the Gaussian 
distribution, the turbulent velocity deviates from the Gaussian distribution as a result of the 
nonlinear mode coupling. Yakhot and Orszag 11-41 have analysed the advection of a passive 
scalar by the turbulent velocity part of the Gaussian distribution. In order to consider the 
effect of the turbulent velocity part of the non-Gaussian distribution upon the advection 
of a passive scalar, we expand the equation of turbulent transport up to the higher order 
utilizing the NavierStokes equations. The Batchelor constant is predicted to be Ba=0.761 
in agreement with the experimental data 0.54.8. 

Introducing the Fourier decomposition of the velocity fields with an ultraviolet cut- 
off A = O(k& where kd is the Kolmogrov dissipation wavenumber, the d-dimensional 
Fourier-transformed NavierStokes equations with a random force term for incompressible 
Bow are 

where the random force is specified by the two-point correlation: - 
( f i ( P ) f i ( L i ) )  = 2(2n)dt'Dok-YP~j(k)s(L +L, ) .  (2) 

Here 
GO(.&) = (-io + wok2)-' 
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.$ = (k, w ) ,  A,(= 1 )  is the unrenormalized expansion parameter. Eliminating the modes U' 
belonging to the wavenumber band Ae-' < q < A from the equations of the motion for 
the modes v <  belonging to the wavenumber q < A e 6 ,  the effects of the eliminated modes 
can be taken into account in terms of the renormalized viscosity [7]: 

where 

Based upon the Yakhot-Orszag work, the, RG method is applied to the problem of the 
distribution of a passive scalar advected by a turbulent fluid in the-present work. The 
equation of motion for the Fourier components of a passive scalar T ( k )  is 

Here go@) = (-iw+Xok*)-I, Ab(= 1) is the umenormalized expansion parameter. Utilizing 
the equations (1) and (5) to remove the modes T' belonging to the wavenumber band 
Ae-r < q < A, we write the equation of motion for the modes T< belonging to the 
wavenumber band q e A e C  up to the higher order in ho and Ah: 

(6) 
d@ d j  

(&)W+2' 
x q#.cj,P,,cq)q-yu,'(4 + 3 ) T < ( i  -I? - 2) 

In the limit k -+ 0 and w + 0, the second term on the right side of (6) gives the correction 
to the bare diffusivity [l-31: 

Only considering the effects of the second term on the right side of (6), Yakhot and Orszag 
[ I 4 1  have calculated the Batchelor constant Ba=1.161. In the present work, the effects of 
the third and fourth t e r m  on the right side of (6) are analysed. The corrections to the bare 
diffusivity given by the two terms are evaluated to be ., 



where 

Taking the limit r --f 0, the renormalized diffusivity is obtained from the differential 
recursion relation: 

dx(r) d - 1 s d  AfDoerr 2h63 s, Dox(r)e(c+z)r +-- ~- 
dr d ( 2 ~ ) ~  u(r)[x(r) + u(r)lAe d(d + 2) (21r)~ u ( r ) [ x ( r )  + U ( ~ ) ] ~ A ~ + ~  

where 

Using the RG method again, we can calculate 

A(r) = 0 

When r is large enough, using ( 3 )  and (14H18) gives (for y = d = 3 )  

(19) 
10 1 40 U 20 2 . 5 ~ "  + 6a3 - 13aZ - 2n + 6.5 
3 I + a  9 ( I + O ) ~  9 (a - 1)2(a + a = -- +-- +-  
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where 

K 0) a = lim - 
r-rm u(r) ' 

From (19), we calculate a = 2.125 so that the renormalized Prandtl number PE = a-' = 
0.4706. Using the calculation for the Kolmogrov constant CK = 1.617 and the relation 
Ba = CK& [ H I ,  we predict the Batchelor constant to be Ba3.761 in agreement with the 
experimental data 0.5-0.8. 

In the present work. further evaluations are implemented. Neglecting the fourth term 
on the right side of (6) yields the prediction for the Batchelor constant to be Ba=1.077, 
which does not deviate far from the Yakhot-Orszag result Ba=1.161. However, neglecting 
the third term on the right side of (6), the calculation for the Batchelor constant Ba=0.777 
is very close to the result Ba4.761. Since the random force introduced in the equations 
(1) obeys the Gaussian distribution, the second and third terms on the right side of (6) only 
describe the advection of a passive scalar by the turbulent velocity part of the Gaussian 
distribution. In fact, the turbulent velocity deviates from the Gaussian distribution as a 
result of the nonlinear mode coupling. The present work shows that the deviation from the 
Gaussian distribution for the turbulent velocity has important effects upon the advection of 
a passive scalar. 

In the engineering calculation for the turbulent shear flows, the turbulent Prandtl 
number is approximately 0.9. Kraichnan has calculated the eddy Prandtl number to 
be (Pt)ddy = 0.142 by the direct-interaction approximation [81. We propose that thc 
renormalized Prandtl number as the eddy Prandtl number is not the same physical quality 
as the turbulent F'randtl number in the engineering. To understand the relations between 
them requires further research. 

We are grateful to Professor Chao-Ha0 Gu for numerous helpful suggestions. We would 
also l i e  to acknowledge Professor Ke-Lin Wang and Professor Bing-Hong Wang for many 
stimulating discussions of these problems. 
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